Search results for "Polynomial identitie"

showing 10 items of 19 documents

Polynomial identities on superalgebras and exponential growth

2003

Abstract Let A be a finitely generated superalgebra over a field F of characteristic 0. To the graded polynomial identities of A one associates a numerical sequence {cnsup(A)}n⩾1 called the sequence of graded codimensions of A. In case A satisfies an ordinary polynomial identity, such sequence is exponentially bounded and we capture its exponential growth by proving that for any such algebra lim n→∞ c n sup (A) n exists and is a non-negative integer; we denote such integer by supexp(A) and we give an effective way for computing it. As an application, we construct eight superalgebras Ai, i=1,…,8, characterizing the identities of any finitely generated superalgebra A with supexp(A)>2 in the f…

Discrete mathematicsSequencePolynomialSuperalgebrasAlgebra and Number TheoryMathematics::Rings and AlgebrasField (mathematics)GrowthSuperalgebraCodimensionsPolynomial identitiesIdentity (mathematics)IntegerBounded functionIdeal (ring theory)MathematicsJournal of Algebra
researchProduct

On the ∗-cocharacter sequence of 3×3 matrices

2000

Abstract Let M 3 (F) be the algebra of 3×3 matrices with involution * over a field F of characteristic zero. We study the ∗ -polynomial identities of M 3 (F) , where ∗=t is the transpose involution, through the representation theory of the hyperoctahedral group B n . After decomposing the space of multilinear ∗ -polynomial identities of degree n under the B n -action, we determine which irreducible B n -modules appear with non-zero multiplicity. In symbols, we write the nth ∗ -cocharacter χ n (M 3 (F),*)=∑ r=0 n ∑ λ⊢r,h(λ)⩽6 μ⊢n−r,h(μ)⩽3 m λ,μ χ λ,μ , where λ and μ are partitions of r and n−r , respectively, χ λ,μ is the irreducible B n -character associated to the pair (λ,μ) and m λ,μ ⩾0 i…

Discrete mathematicsNumerical AnalysisMultilinear mapAlgebra and Number TheoryMultiplicity (mathematics)Hyperoctahedral groupRepresentation theoryPolynomial identitiesCombinatoricsMatrices with involutionCocharacter sequenceDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematicsLinear Algebra and its Applications
researchProduct

Asymptotics for Graded Capelli Polynomials

2014

The finite dimensional simple superalgebras play an important role in the theory of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T 2-ideal of graded identities of any such algebra by considering the growth of the corresponding supervariety. We consider the T 2-ideal Γ M+1,L+1 generated by the graded Capelli polynomials C a p M+1[Y,X] and C a p L+1[Z,X] alternanting on M+1 even variables and L+1 odd variables, respectively. We prove that the graded codimensions of a simple finite dimensional superalgebra are asymptotically equal to the graded codimensions of the T 2-ideal Γ M+1,L+1, for some fixed natural numbers M and L. In particular csupn(Γk2+l2+1…

CombinatoricsDiscrete mathematicsSettore MAT/02 - AlgebraMathematics::Commutative AlgebraGeneral MathematicsSuperalgebras Polynomial identities Codimensions GrowthZero (complex analysis)Natural numberAlgebra over a fieldSuperalgebraMathematics
researchProduct

Codimension and colength sequences of algebras and growth phenomena

2015

We consider non necessarily associative algebras over a field of characteristic zero and their polynomial identities. Here we describe some of the results obtained in recent years on the sequence of codimensions and the sequence of colengths of an algebra.

Discrete mathematicsPolynomialPure mathematicsSequenceMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)Codimension01 natural sciences010101 applied mathematicsSettore MAT/02 - AlgebraComputational Theory and Mathematics0101 mathematicsStatistics Probability and UncertaintyVariety (universal algebra)Algebra over a fieldPolynomial identities Variety Almost nilpotent Codimension.Associative propertyMathematicsSão Paulo Journal of Mathematical Sciences
researchProduct

Polynomial growth and star-varieties

2016

Abstract Let V be a variety of associative algebras with involution over a field F of characteristic zero and let c n ⁎ ( V ) , n = 1 , 2 , … , be its ⁎-codimension sequence. Such a sequence is polynomially bounded if and only if V does not contain the commutative algebra F ⊕ F , endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4 × 4 upper triangular matrices. Such algebras generate the only varieties of ⁎-algebras of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety is polynomially bounded. In this paper we completely classify all subvarieties of the ⁎-varieties of almost polynomial growth by gi…

Involution (mathematics)Algebra and Number TheorySubvariety010102 general mathematicsSubalgebraStar-codimensionTriangular matrixStar-polynomial identitie010103 numerical & computational mathematicsGrowth01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraExponential growthBounded function0101 mathematicsCommutative algebraAssociative propertyMathematics
researchProduct

Trace Identities on Diagonal Matrix Algebras

2020

Let Dn be the algebra of n × n diagonal matrices. On such an algebra it is possible to define very many trace functions. The purpose of this paper is to present several results concerning trace identities satisfied by this kind of algebras.

Pure mathematicsTrace (linear algebra)Diagonal matricesCodimensions; Diagonal matrices; Polynomial identities; TracesDiagonal matriceCodimensionsPolynomial identitiesSettore MAT/02 - AlgebraPolynomial identitieCodimensionTracesDiagonal matrixAlgebra over a fieldMathematicsTrace
researchProduct

Polynomial identities for the Jordan algebra of upper triangular matrices of order 2

2012

Abstract The associative algebras U T n ( K ) of the upper triangular matrices of order n play an important role in PI theory. Recently it was suggested that the Jordan algebra U J 2 ( K ) obtained by U T 2 ( K ) has an extremal behaviour with respect to its codimension growth. In this paper we study the polynomial identities of U J 2 ( K ) . We describe a basis of the identities of U J 2 ( K ) when the field K is infinite and of characteristic different from 2 and from 3. Moreover we give a description of all possible gradings on U J 2 ( K ) by the cyclic group Z 2 of order 2, and in each of the three gradings we find bases of the corresponding graded identities. Note that in the graded ca…

Pure mathematicsPolynomialAlgebra and Number TheoryJordan algebraTriangular matrixJordan polynomial identities graded upper triangularCyclic groupField (mathematics)CodimensionBasis (universal algebra)CombinatoricsSettore MAT/02 - AlgebraOrder (group theory)Mathematics
researchProduct

Ordinary and graded cocharacter of the Jordan algebra of 2x2 upper triangular matrices

2014

Abstract Let F be a field of characteristic zero and U J 2 ( F ) be the Jordan algebra of 2 × 2 upper triangular matrices over F . In this paper we give a complete description of the space of multilinear graded and ordinary identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . For every Z 2 -grading of U J 2 ( F ) we compute the multiplicities in the graded cocharacter sequence and furthermore we compute the ordinary cocharacter.

Discrete mathematicsNumerical AnalysisSequenceMultilinear mapPure mathematicsAlgebra and Number TheoryJordan algebraZero (complex analysis)Triangular matrixField (mathematics)Space (mathematics)Representation theoryJordan algebras Polynomial identities Basis of identities Cocharacter Gradings Graded polynomial identitiesSettore MAT/02 - AlgebraDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematics
researchProduct

Proper identities, Lie identities and exponential codimension growth

2008

Abstract The exponent exp ( A ) of a PI-algebra A in characteristic zero is an integer and measures the exponential rate of growth of the sequence of codimensions of A [A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145–155; A. Giambruno, M. Zaicev, Exponential codimension growth of P.I. algebras: An exact estimate, Adv. Math. 142 (1999) 221–243]. In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all PI-algebras, except for some algebras of exponent two strictly related to t…

Discrete mathematicsSequencePure mathematicsAlgebra and Number TheoryZero (complex analysis)CodimensionExponential functionPolynomial identitiesIntegerpolynomial identity codimensionsExponentCodimension growthExterior algebraAssociative propertyMathematics
researchProduct

Trace identities and almost polynomial growth

2021

In this paper we study algebras with trace and their trace polynomial identities over a field of characteristic 0. We consider two commutative matrix algebras: $D_2$, the algebra of $2\times 2$ diagonal matrices and $C_2$, the algebra of $2 \times 2$ matrices generated by $e_{11}+e_{22}$ and $e_{12}$. We describe all possible traces on these algebras and we study the corresponding trace codimensions. Moreover we characterize the varieties with trace of polynomial growth generated by a finite dimensional algebra. As a consequence, we see that the growth of a variety with trace is either polynomial or exponential.

PolynomialPure mathematicsTrace (linear algebra)Trace algebrasField (mathematics)01 natural sciencesPolynomial identitiesMatrix (mathematics)16R10 16R30 16R50Polynomial identitieCodimensions growth Polynomial identities Trace algebras0103 physical sciencesDiagonal matrixFOS: Mathematics0101 mathematicsCommutative propertyMathematicsCodimensions growth; Polynomial identities; Trace algebrasAlgebra and Number TheoryCodimensions growth010102 general mathematicsTrace algebraMathematics - Rings and AlgebrasExponential functionSettore MAT/02 - AlgebraRings and Algebras (math.RA)010307 mathematical physicsVariety (universal algebra)
researchProduct