Search results for "Polynomial identitie"

showing 10 items of 19 documents

Varieties of algebras with pseudoinvolution: Codimensions, cocharacters and colengths

2022

Abstract Let A be a finitely generated superalgebra with pseudoinvolution ⁎ over an algebraically closed field F of characteristic zero. In this paper we develop a theory of polynomial identities for this kind of algebras . In particular, we shall consider three sequences that can be attached to Id ⁎ ( A ) , the T 2 ⁎ -ideal of identities of A: the sequence of ⁎-codimensions c n ⁎ ( A ) , the sequence of ⁎-cocharacter χ 〈 n 〉 ⁎ ( A ) and the ⁎-colength sequence l n ⁎ ( A ) . Our purpose is threefold. First we shall prove that the ⁎-codimension sequence is eventually non-decreasing, i.e., c n ⁎ ( A ) ≤ c n + 1 ⁎ ( A ) , for n large enough. Secondly, we study superalgebras with pseudoinvoluti…

ColengthsPolynomialSequencePure mathematicsMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraPseudoinvolutionsZero (complex analysis)Cocharacters; Colengths; Multiplicities; Polynomial identities; PseudoinvolutionsCocharactersSuperalgebraPolynomial identitiesSettore MAT/02 - AlgebraSection (category theory)Bounded functionIdeal (ring theory)Algebraically closed fieldMathematics
researchProduct

Asymptotics for Graded Capelli Polynomials

2014

The finite dimensional simple superalgebras play an important role in the theory of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T 2-ideal of graded identities of any such algebra by considering the growth of the corresponding supervariety. We consider the T 2-ideal Γ M+1,L+1 generated by the graded Capelli polynomials C a p M+1[Y,X] and C a p L+1[Z,X] alternanting on M+1 even variables and L+1 odd variables, respectively. We prove that the graded codimensions of a simple finite dimensional superalgebra are asymptotically equal to the graded codimensions of the T 2-ideal Γ M+1,L+1, for some fixed natural numbers M and L. In particular csupn(Γk2+l2+1…

CombinatoricsDiscrete mathematicsSettore MAT/02 - AlgebraMathematics::Commutative AlgebraGeneral MathematicsSuperalgebras Polynomial identities Codimensions GrowthZero (complex analysis)Natural numberAlgebra over a fieldSuperalgebraMathematics
researchProduct

Y-proper graded cocharacters and codimensions of upper triangular matrices of size 2, 3, 4

2012

Abstract Let F be a field of characteristic 0. We consider the upper triangular matrices with entries in F of size 2, 3 and 4 endowed with the grading induced by that of Vasilovsky. In this paper we give explicit computation for the multiplicities of the Y -proper graded cocharacters and codimensions of these algebras.

CombinatoricsSettore MAT/02 - AlgebraAlgebra and Number TheoryMathematics::Commutative AlgebraGraded identitiesComputationPolynomial identities graded identitiesTriangular matrixPolynomial identitiesMathematicsJournal of Algebra
researchProduct

On the ∗-cocharacter sequence of 3×3 matrices

2000

Abstract Let M 3 (F) be the algebra of 3×3 matrices with involution * over a field F of characteristic zero. We study the ∗ -polynomial identities of M 3 (F) , where ∗=t is the transpose involution, through the representation theory of the hyperoctahedral group B n . After decomposing the space of multilinear ∗ -polynomial identities of degree n under the B n -action, we determine which irreducible B n -modules appear with non-zero multiplicity. In symbols, we write the nth ∗ -cocharacter χ n (M 3 (F),*)=∑ r=0 n ∑ λ⊢r,h(λ)⩽6 μ⊢n−r,h(μ)⩽3 m λ,μ χ λ,μ , where λ and μ are partitions of r and n−r , respectively, χ λ,μ is the irreducible B n -character associated to the pair (λ,μ) and m λ,μ ⩾0 i…

Discrete mathematicsNumerical AnalysisMultilinear mapAlgebra and Number TheoryMultiplicity (mathematics)Hyperoctahedral groupRepresentation theoryPolynomial identitiesCombinatoricsMatrices with involutionCocharacter sequenceDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematicsLinear Algebra and its Applications
researchProduct

Ordinary and graded cocharacter of the Jordan algebra of 2x2 upper triangular matrices

2014

Abstract Let F be a field of characteristic zero and U J 2 ( F ) be the Jordan algebra of 2 × 2 upper triangular matrices over F . In this paper we give a complete description of the space of multilinear graded and ordinary identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . For every Z 2 -grading of U J 2 ( F ) we compute the multiplicities in the graded cocharacter sequence and furthermore we compute the ordinary cocharacter.

Discrete mathematicsNumerical AnalysisSequenceMultilinear mapPure mathematicsAlgebra and Number TheoryJordan algebraZero (complex analysis)Triangular matrixField (mathematics)Space (mathematics)Representation theoryJordan algebras Polynomial identities Basis of identities Cocharacter Gradings Graded polynomial identitiesSettore MAT/02 - AlgebraDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematics
researchProduct

Codimension and colength sequences of algebras and growth phenomena

2015

We consider non necessarily associative algebras over a field of characteristic zero and their polynomial identities. Here we describe some of the results obtained in recent years on the sequence of codimensions and the sequence of colengths of an algebra.

Discrete mathematicsPolynomialPure mathematicsSequenceMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)Codimension01 natural sciences010101 applied mathematicsSettore MAT/02 - AlgebraComputational Theory and Mathematics0101 mathematicsStatistics Probability and UncertaintyVariety (universal algebra)Algebra over a fieldPolynomial identities Variety Almost nilpotent Codimension.Associative propertyMathematicsSão Paulo Journal of Mathematical Sciences
researchProduct

On algebras of polynomial codimension growth

2016

Let A be an associative algebra over a field F of characteristic zero and let $$c_n(A), n=1, 2, \ldots $$ , be the sequence of codimensions of A. It is well-known that $$c_n(A), n=1, 2, \ldots $$ , cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.

Discrete mathematicsPolynomialSequenceMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)Codimension01 natural sciencesSettore MAT/02 - AlgebraComputational Theory and MathematicsBounded function0103 physical sciencesAssociative algebraPolynomial identities Codimensions Codimension growth010307 mathematical physics0101 mathematicsStatistics Probability and UncertaintyMathematicsSão Paulo Journal of Mathematical Sciences
researchProduct

Group graded algebras and multiplicities bounded by a constant

2013

AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.

Discrete mathematicsPure mathematicsFinite groupAlgebra and Number TheoryMathematics::Commutative AlgebraGroup (mathematics)Zero (complex analysis)Polynomial identities Graded algebras cocharactersRepresentation theorySettore MAT/02 - AlgebraSymmetric groupBounded functionAlgebra over a fieldConstant (mathematics)MathematicsJournal of Pure and Applied Algebra
researchProduct

Polynomial identities on superalgebras and exponential growth

2003

Abstract Let A be a finitely generated superalgebra over a field F of characteristic 0. To the graded polynomial identities of A one associates a numerical sequence {cnsup(A)}n⩾1 called the sequence of graded codimensions of A. In case A satisfies an ordinary polynomial identity, such sequence is exponentially bounded and we capture its exponential growth by proving that for any such algebra lim n→∞ c n sup (A) n exists and is a non-negative integer; we denote such integer by supexp(A) and we give an effective way for computing it. As an application, we construct eight superalgebras Ai, i=1,…,8, characterizing the identities of any finitely generated superalgebra A with supexp(A)>2 in the f…

Discrete mathematicsSequencePolynomialSuperalgebrasAlgebra and Number TheoryMathematics::Rings and AlgebrasField (mathematics)GrowthSuperalgebraCodimensionsPolynomial identitiesIdentity (mathematics)IntegerBounded functionIdeal (ring theory)MathematicsJournal of Algebra
researchProduct

Proper identities, Lie identities and exponential codimension growth

2008

Abstract The exponent exp ( A ) of a PI-algebra A in characteristic zero is an integer and measures the exponential rate of growth of the sequence of codimensions of A [A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145–155; A. Giambruno, M. Zaicev, Exponential codimension growth of P.I. algebras: An exact estimate, Adv. Math. 142 (1999) 221–243]. In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all PI-algebras, except for some algebras of exponent two strictly related to t…

Discrete mathematicsSequencePure mathematicsAlgebra and Number TheoryZero (complex analysis)CodimensionExponential functionPolynomial identitiesIntegerpolynomial identity codimensionsExponentCodimension growthExterior algebraAssociative propertyMathematics
researchProduct